Spezial: Klima- und Kältetechnik
Technologiezentrum „asperm IQ“
Ein Bürohaus im Plus-Energie-Standard

Lage

Einbindung in das Stadtentwicklungsprojekt

Planung im Plus-Energie-Standard
Aufbau der Fassade

Es bietet Unternehmen und Einrichtungen aus dem Bereich der nachhaltigen Technologienentwicklung multifunktionale Flächen im Erdgeschoss und Büroflächen in den Obergeschossen.

Das Projekt „Asperm IQ“ definiert in zweierlei Hinsicht wichtige Entwicklungsschritte für die Seestadt Asperm:

- „Asperm IQ“ ist das erste Hochbauprojekt der Seestadt Asperm.
- Als Leuchtturmprojekt soll es vorbildhaft die Errichtung eines Plusenergiegebäudes aufzeigen, das sich an das lokale Ressourcenangebot anpasst, einen möglichst hohen Nutzerkomfort bietet und hohen Anforderungen an Nachhaltigkeit gerecht wird.

Erschließung

Südwestseitig befindet sich die interne Zufahrt für Anlieferung, Feuerwehr, Müllfahrzeuge mit Ausfahrt über die Straße 16 und die überdachte Ein- und Ausfahrt in die Tiefgarage. Die Anlieferung für die Lokale an der S/O-Seite erfolgt über zwei Parkbuchen an der Straße 15.

Integrale Planung

Im Einzelnen konnten Optimierungen in den Bereichen Wärmewasser durch den Einsatz von Spararmaturen und der Abwärmenutzung aus den Serverräumen durch eine Energieschiene, in der

Das „Innovationsquartier“
Das erste Hochbauprojekt in der Seestadt Aspern bietet Unternehmern und Einrichtungen aus dem Bereich der nachhal- tigen Technologieentwicklung multifunktionale Flächen im Erdgeschoss und Büroräumen in den Obergeschossen. Die Orientierung der beiden Büroräume verläuft in Richtung NAW/S/O. Der Haupteingang liegt entsprechend dem städte- baulichen Konzept an der attrak-}

3 Erdgeschoss

plätzen sowie Technik (Elektro + HKLS + Fernwärme) und Abstellräume,
• Ein Erdgeschoss mit Foyer, allgemeine Nebenräumen, Seminarbereich, Restaurant mit Küche sowie drei Lokale für eine multifunktionale Nutzung;
• Vier Obergeschosse mit Büros (24 mögliche Mieteinheiten) und
• Ein Dachgeschoss mit der Lüftungszentrale.

Die Fassade
Eine hochwärmegeädämme, wärmebrückenoptimierte Gebäudefülle brachte die Optimierung auf Passivhausniveau. Der U-Wert der Außenwände beträgt einschließlich der Wärmebrücken 0,15 W/m²K. Der kompakte, energetisch optimierte Baukörper mit niedrigem Mittelteil und den zweiteiligen hohen Randbaukörpern wird durch eine einheitliche Metalldämmung zusammengefasst. Die Fassade besteht aus einem vertikal ausgerichteten Alu-Profilblech in Bronze. Durch die zusätzliche Perforierung einer Profilseite verändert sich die Erscheinung der Fassade je nach Lichteinfall. Die umlaufenden, 2 m hohen und sturzfreien Fensterbänder (mit öffnen- und lüftungsführenden und außen liegendem Sonnenschutz in Form von Raffstores) bieten ein Optimum an Tagesleicht, Wärme- und Sonnenschutz. Dazwenen werden sie durch davor gesetzte Metallblenden überlagert.

Technische Gebäudeausrüstung (TGA)

In den EDV-Räumen sind Kleinwärmpumpen installiert, die die Serverwärme abführen und auf einem Niedertemperaturniveau für die Flächenheizung bereitstellen. Der Energiebedarf der sonstigen Haustechnik wurde in Abstimmung mit den geltenden Normen so weit als möglich reduziert.

Neben der optimierten Tageslichtplanung werden hocheffiziente Stehlüchen mit Anwesenheits- und Tageslichtsteuerung eingesetzt.

Die Fassadenbegrünung dient entsprechend des Sonnenstands im Jahreszeitenverlauf auch der teilweisen Verschattung vor den Fenstern. Die Stehlüchen versorgen die Arbeitsplätze ohne große Lichtverluste mit 500 lx Beleuchtungsstärke.

Kenndaten

Projektbeteiligte
Auftraggeber: WWF Business & Service Center GmbH, 1010 Wien, Austria
Integrale Planung: ATP Architekten und Ingenieure, www.atp.ag
Gesamtprojektleiter: Hannes Ahammer, Wolfgang Wildauer
Architekt: Martin Hittner, Manuela Resch, Walter Thomke
Wettbewerb: Horst Reiner, Dario Travas, Renate Weissenböck, Markus Lentsch, Florian Schaller, Anna Gnon, Sabine Holzweber, Tatiana Winkelmann
Consulting: ATP sustain
Tragwerksplanung: Martin Krautgartner, Wojciech Tomczak, Nikola Ruzicic, Kai Sauwrein HKLS: Rudolf Beden, Carin Frotschnig, Peter Hennerfeind, Peter Blaha
Elektro: Helmut Vince, Radoslav Simacek
AVA: Markus Schlaffer, Markus Tendl
ÖBA, Fachbauleitung: Kurt Rosler, Oliver Zvanovic, Bernd, Gradnitzer, Radoslav Simacek
Landschaftsplanung: Ideale - Alice Gösseg, Korbinian Lechner
Bauphysik und thermische Gebäudesimulation: IBO - Thomas Zelger, Felix Heisinger
Tageslichtsimulation: hightlight - Andreas Haidegger
Brandschutzkonzept: Prüfstelle für Brandschutztechnik - Wolfgang Steinkeller
Auditor: IBO - Institut für Bauen und Ökologie

www.tab.de
Materialwahl und -kontrolle
Da das Projekt nicht nur energetisch die höchstmögliche Qualität erreichen sollte, sondern auch an die Baukologie hohe Ansprüche gestellt sind, wurde planungsbegleitend ein Produktmanagement durchgeführt. Somit wurde während der gesamten Planungs- und Ausführungsphase auch die ökologische

Lüftungsanlage Büro L01
- Ausgangstemperatur: +19°C
- Lüftungstemperatur: +21°C
- Außenlufttemperatur: +32°C
- Außenluftfeuchtigkeit: +30%

Lüftungsanlage Küche L02
- Ausgangstemperatur: +19°C
- Lüftungstemperatur: +21°C
- Außenlufttemperatur: +32°C
- Außenluftfeuchtigkeit: +30%
6 Plus-Energie-Standard

Zertifizierung

Technische Daten:

Wettbewerb: 01/2010
Planungsbeginn: 03/2010
Baubeginn: 07/2011
Fertigstellung: 08/2012
Brutto-Grundfläche (BGF gesamt): ca. 11850 m²
Bruttorauminhalt (BRI gesamt): ca. 50254 m³
Netto-Grundfläche (NGF gesamt): ca. 10620 m²
Mietflächen (HNF): ca. 4915 m²